

SEMESTER I

THEORY

TITLE OF COURSE	DESCRIPTIVE STATISTICS AND PROBABILITY THEORY			
COURSE CODE	UNIT	TOPICS	LECTURES/ WEEK	CREDITS
	Ι	DATA TABULATION AND MEASURES OF CENTRAL TENDENCY	1	
	II	MEASURES OF DISPERSION,	1	3
		SKEWNESS & KURTOSIS		
	III	ELEMENTARY PROBABILITY THEORY & RANDOM VARIABLES	1	

PRACTICAL

COURSE CODE	PRACTICALS BASED ON	LECTURES/ WEEK	CREDITS
	DESCRIPTIVE STATISTICS AND PROBABILITY THEORY	2	1

SEMESTER II

THEORY

TITLE OF COURSE	DISTRIBUTION THEORY AND ESTIMATION			
COURSE CODE	UNIT	TOPICS	LECTURES/ WEEK	CREDITS
	Ι	STANDARD DISCRETE DISTRIBUTIONS	1	
	II	STANDARD CONTINUOUS DISTRIBUTIONS	1	3
	III	ELEMENTARY TOPICS ON ESTIMATION & TESTING OF HYPOTHESIS	1	

PRACTICAL

COURSE CODE	PRACTICALS BASED ON	LECTURES/ WEEK	CREDITS
	DISTRIBUTION THEORY AND ESTIMATION	2	2

SYLLABUS FOR F.Y.B.Sc. UNDER AUTONOMY SEMESTER I

- To be well versed with data collection techniques.
- To effectively use data visualization and summarization techniques to understand data.
- To understand the concepts of probability and random variable.

Course Code	Title	Credits
	DESCRIPTIVE STATISTICS AND PROBABILITY THEORY	3 Credits

UNIT I: DATA TABULATION AND MEASURES OF CENTRAL TENDENCY Types of data: Qualitative and Quantitative data, Time series data and cross sectiondata, discrete and continuous data. Different types of scales: nominal, ordinal, interval, and ratio. Experimental and observational data.	15 Lectures
Concept of population and sample. Census and Sample survey. Relative merits and demerits. Statistical Organizations and their functions (CSO, NSSO). Survey findings.Primary data: Concept of a questionnaire and a schedule. Secondary data: Sources.	
Case studies illustrating use of Statistics in different sectors. Diagrams: Bar diagrams, Pie diagram.	
Univariate frequency distribution of discrete and continuous variables. Cumulative frequency distribution. Graphical representation of frequency distribution by Histogram, Frequency curve, Cumulative frequency curves, Stem and leaf diagram. Central tendency of data. Requisites of a good measure of central tendency. Positionalaverages: Median, Mode, Partition Values: Quantiles. Mathematical averages: Arithmetic mean (Simple mean, trimmed mean, weighted mean, combined mean), Geometric mean, Harmonic mean. Merits and demerits of different measures.	
 UNIT II: MEASURES OF DISPERSION, SKEWNESS & KURTOSIS Concept of dispersion. Requisites of good measure of dispersion. Absolute measures of dispersion: Range, Quartile Deviation, Mean absolute deviation, Standard deviation, and corresponding relative measures of dispersion. Combined variance. Raw & Central moments and relationship between them. Concept of Skewness and Kurtosis: Absolute and Relative measures of Skewness: Karl Pearson's, Bowley's and Measure based on moments. Measure of Kurtosis basedon moments. 	15 Lectures
Box &Whiskers Plot.	

UNIT III: ELEMENTARY PROBABILITY THEORY	15 Lectures
Random experiment, Sample space, Event, Operation of events, mutually exclusive and exhaustive events. Classical (Mathematical), Empirical (Statistical), definitions of Probability and their properties. Subjective probability.	
Theorems on Addition and Multiplication of probabilities.	
Independence of events, pairwise and mutual independence of three events. Conditional probability, Bayes' theorem.	
Concept of discrete & continuous random variables: Probability distribution and cumulative distribution function, definition, and their properties.	
Expectation of a random variable. Theorems on Expectation & Variance.	
Raw and Central moments and their relationships (up to order four).	
Concepts of Skewness and Kurtosis.	

SEMESTER I: PRACTICALS

1. Tabulation Classification of Data
2. Diagrammatic and Graphical Representation
3. Measures of Central tendency
 Measures of Dispersion, Moments, Measures of Skewness and Kurtosis
5. Probability
6. Random Variable -Discrete & Continuous

SYLLABUS FOR F.Y. BSc. UNDER AUTONOMY

SEMESTER II

Objectives:

• To study the concept and properties of standard discrete and continuous distribution.

Course Code	Title	Credits
	DISTRIBUTION THEORY AND ESTIMATION	2 Credits (45 lectures)
random van Correlation continuous Discrete Un variance an Binomial a approximat	int (Bivariate) probability distribution of two discrete & continuous iables. Marginal and conditional distributions. Coefficient of . Independence of two random variables for both discrete and random variables. hiform, Hypergeometric, Binomial and Poisson distributions: mean, d recurrence relation for probability, fitting of distribution. pproximation to Hypergeometric distribution. Poisson ion l distribution.	15 Lectures
distribution mean, med distribution exponentia	Uniform, Exponential (with location, scale parameter), Gamma a, Beta type 1, Beta type 2 and Normal distribution. Derivations of an and variance of Uniform, Exponential distribution, Gamma a, Beta type 1, Beta type 2. Lack of memory property of distribution. of Normal distribution. Use of normal tables. Normal approximation	15 Lectures
-	and Poisson distribution.	
bias andsta only). Sampling d sampleonly single samp based on la composite I Level of sig Tests for sp	Parameter, statistic, estimator and estimate, sampling distribution, ndard error of an estimator. Central Limit theorem (statement istributions of sample mean and sample proportion. (For large) Point and Interval estimate of mean and proportion based on ble oflarge size and difference between two means and proportions rge sample sizes. Null and alternate hypotheses, Simple and hypothesis. Type I and II errors, Critical region, Size of the test, gnificance. Power of the test. Applications of Normal Distribution: becified value of population mean and population proportion. Tests of two population means and population proportions.	15 Lectures

SEMESTER II: PRACTICALS

1. Bivariate probability distributions
2. Standard Discrete Distributions
3. Standard Continuous distributions
4. Normal Distribution and Central Limit Theorem
5. Point and Interval Estimation
6. Estimation
7. Testing of Hypothesis
8. Large Sample Test

REFERENCES:

- 1. Agarwal B.L. (1978). Basic Statistics: New Age International Ltd.
- 2. David S.(1994). *Elementary Probability* : Cambridge University Press.
- Goon A.M., Gupta M.K.& Dasgupta B. (1968). *Fundamentals of Statistics*, Volume II: The World Press Private Limited, Calcutta.
- 4. Gupta S.C.& Kapoor V.K.(2007). Fundamentals of Mathematical Statistics: Sultan Chand & Sons
- 5. Gupta S.C.& Kapoor V.K.(2014). Fundamentals of Applied Statistics: Sultan Chand & Sons
- 6. Hoel P.G.(1947). Introduction to Mathematical Statistics: Asia Publishing House
- 7. Hogg R.V. & Tannis E.P.(1977). Probability and Statistical Inference: McMillan Publishing Co. Inc.
- 8. Kothari C.R.(1985). Research Methodology: Wiley Eastern Limited.
- 9. Medhi, J. (2013). Statistical Methods, An Introductory Text. Second Edition: New Age International Ltd.
- 10. Pitan Jim. (1977) . Probability: Narosa Publishing House.
- 11. Spiegel M.R. (1961). Theory and Problems of Statistics. Schaum's Publications series: Tata McGraw-Hill